Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.509
Filtrar
2.
J Extracell Vesicles ; 13(3): e12420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490958

RESUMO

High-grade serous carcinoma of the ovary, fallopian tube and peritoneum (HGSC), the most common type of ovarian cancer, ranks among the deadliest malignancies. Many HGSC patients have excess fluid in the peritoneum called ascites. Ascites is a tumour microenvironment (TME) containing various cells, proteins and extracellular vesicles (EVs). We isolated EVs from patients' ascites by orthogonal methods and analyzed them by mass spectrometry. We identified not only a set of 'core ascitic EV-associated proteins' but also defined their subset unique to HGSC ascites. Using single-cell RNA sequencing data, we mapped the origin of HGSC-specific EVs to different types of cells present in ascites. Surprisingly, EVs did not come predominantly from tumour cells but from non-malignant cell types such as macrophages and fibroblasts. Flow cytometry of ascitic cells in combination with analysis of EV protein composition in matched samples showed that analysis of cell type-specific EV markers in HGSC has more substantial prognostic potential than analysis of ascitic cells. To conclude, we provide evidence that proteomic analysis of EVs can define the cellular composition of HGSC TME. This finding opens numerous avenues both for a better understanding of EV's role in tumour promotion/prevention and for improved HGSC diagnostics.


Assuntos
Cistadenocarcinoma Seroso , Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Ascite/metabolismo , Ascite/patologia , Microambiente Tumoral , Proteômica , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/diagnóstico
3.
Cells ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391958

RESUMO

Ovarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as TP53 in high-grade serous and BRAF/KRAS in low-grade serous carcinomas highlight the need for tailored therapies. Varying mutation prevalence across subtypes, including BRCA1/2, PTEN, PIK3CA, CTNNB1, and c-myc amplification, offers potential therapeutic targets. This review underscores TP53's pivotal role and advocates p53 immunohistochemical staining for mutational analysis. BRCA1/2 mutations' significance as genetic risk factors and their relevance in PARP inhibitor therapy are discussed, emphasizing the importance of genetic testing. This review also addresses the paradoxical better prognosis linked to KRAS and BRAF mutations in ovarian cancer. ARID1A, PIK3CA, and PTEN alterations in platinum resistance contribute to the genetic landscape. Therapeutic strategies, like restoring WT p53 function and exploring PI3K/AKT/mTOR inhibitors, are considered. The evolving understanding of genetic factors in ovarian carcinomas supports tailored therapeutic approaches based on individual tumor genetic profiles. Ongoing research shows promise for advancing personalized treatments and refining genetic testing in neoplastic diseases, including ovarian cancer. Clinical genetic screening tests can identify women at increased risk, guiding predictive cancer risk-reducing surgery.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Proteína BRCA1/genética , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas B-raf/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinogênese , Transformação Celular Neoplásica , Cistadenocarcinoma Seroso/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Patrimônio Genético
4.
Am J Surg Pathol ; 48(4): 475-486, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298022

RESUMO

Serous tubal intraepithelial carcinoma (STIC) is the fallopian tube precursor lesion for most cases of pelvic high-grade serous carcinoma (HGSC). To date, the morphologic, molecular, and clinical heterogeneity of STIC and a less atypical putative precursor lesion, termed serous tubal intraepithelial lesion, has not been well characterized. Better understanding of precursor heterogeneity could impact the clinical management of women with incidental STICs (without concurrent carcinoma) identified in cases of prophylactic or opportunistic salpingectomy. This study analyzed morphologic and molecular features of 171 STICs and 21 serous tubal intraepithelial lesions. We assessed their histologic features, Ki-67 and p53 staining patterns, and genome-wide DNA copy number alterations. We classified all precursor lesions into 2 morphologic subtypes, one with a flat surface (Flat) and the other characterized by budding, loosely adherent, or detached (BLAD) morphology. On the basis of pathology review by a panel of 8 gynecologic pathologists, we found 87 BLAD, 96 Flat, and 9 indeterminate lesions. As compared with Flat lesions, BLAD lesions were more frequently diagnostic of STIC ( P <0.0001) and were found concurrently with HGSC ( P <0.0001). BLAD morphology was also characterized by higher Ki-67 proliferation index ( P <0.0001), presence of epithelial stratification ( P <0.0001), and increased lymphocyte density ( P <0.0001). BLAD lesions also exhibited more frequent DNA copy number gain/amplification at the CCNE1 or CMYC loci canonical to HGSCs ( P <0.0001). Both BLAD morphology and STIC diagnoses are independent risk factors for an elevated Ki-67 proliferation index. No correlation was observed between BLAD and Flat lesions with respect to patient age, presence of germline BRCA1/2 mutation, or p53 staining pattern. These findings suggest that tubal precursor lesions are morphologically and molecularly heterogeneous, laying the foundation for further studies on the pathogenesis of HGSC initiation and identifying histologic features predictive of poor patient outcomes.


Assuntos
Adenocarcinoma in Situ , Carcinoma in Situ , Carcinoma , Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Feminino , Humanos , Proteína BRCA1 , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Neoplasias Ovarianas/patologia , Antígeno Ki-67 , Proteína Supressora de Tumor p53/genética , Proteína BRCA2 , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , DNA
5.
J Mol Diagn ; 26(4): 257-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280423

RESUMO

Low-grade serous carcinoma (LGSC) may develop from serous borderline tumor (SBT) tissue, where the micropapillary type (mSBT) presents the highest risk for progression. The sensitivity of LGSC to standard chemotherapy is limited, so alternative therapeutic approaches, including targeted treatment, are needed. However, knowledge about the molecular landscape of LGSC and mSBT is limited. A sample set of 137 pathologically well-defined cases (LGSC, 97; mSBT, 40) was analyzed using capture DNA next-generation sequencing (727 genes) and RNA next-generation sequencing (147 genes) to show the landscape of somatic mutations, gene fusions, expression pattern, and prognostic and predictive relevance. Class 4/5 mutations in the main driver genes (KRAS, BRAF, NRAS, ERBB2, USP9X) were detected in 48% (14/29) of mSBT cases and 63% (47/75) of LGSC cases. The USP9X mutation was detected in only 17% of LGSC cases. RNA next-generation sequencing revealed gene fusions in 6 of 64 LGSC cases (9%) and 2 of 33 mSBT cases (9%), and a heterogeneous expression profile across LGSC and mSBT. No molecular characteristics were associated with greater survival. The somatic genomic and transcriptomic profiles of 35 mSBT and 85 LGSC cases are compared for the first time. Candidate oncogenic gene fusions involving BRAF, FGFR2, or NF1 as a fusion partner were identified. Molecular testing of LGSC may be used in clinical practice to reveal therapeutically significant targets.


Assuntos
Compostos Azo , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Mutação , Perfilação da Expressão Gênica , Genômica , RNA , Gradação de Tumores , Ubiquitina Tiolesterase/genética
6.
Recent Pat Anticancer Drug Discov ; 19(2): 233-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38214360

RESUMO

INTRODUCTION: Circular RNAs (circRNAs) are important biological molecules associated with the pathogenesis of multiple cancers. OBJECTIVE: This work aimed to investigate the function and molecular mechanism of circ_0070203 in high-grade serous ovarian cystadenocarcinoma (HGSOC). METHODS: circRNA microarray was conducted to detect the circ_0070203 expression in HGSOC tissues. Bioinformatics analysis was used to find the binding sites between circ_0070203, miR- 370-3p and TGFßR2. Real-time quantitative reverse transcription PCR (RT-qPCR) was executed to detect the expressions of circ_0070203, miR-370-3p and TGFßR2 in HGSOC tissues and SKOV3 cells. Dual-luciferase reporter gene assay was used to validate the relationships between miR-370-3p and circ_0070203 or TGFßR2. Besides, transwell assays were conducted to assess the migrative, invasive abilities of ovarian cancer (OC) cells. Western blotting was adopted to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins. The related patents were also studied during the research. RESULTS: Circ_0070203 and TGFßR2 were upregulated, while miR-370-3p was downregulated in FIGO stage III-IV HGSOC tissues and SKOV-3 cell lines. circ_0070203 overexpression changed the expression of other EMT-related proteins and enhanced the migrative, invasive abilities of OC cells, while silencing circ_0070203 worked oppositely. Mechanistically, circ_0070203 could upregulate TGFßR2 expression in OC cells via sponging miR-370-3p. CONCLUSION: Circ_0070203 could promote the epithelial-mesenchymal transition, invasion, and metastasis of HGSOC via regulating the miR-370-3p/TGFßR2 axis. Our findings provided a potential biomarker for HGSOC therapy.


Assuntos
Cistadenocarcinoma Seroso , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Cistadenocarcinoma Seroso/genética , Patentes como Assunto , Carcinoma Epitelial do Ovário/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Ovarianas/genética , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica
7.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255960

RESUMO

RAD51D mutations have been implicated in the transformation of normal fallopian tube epithelial (FTE) cells into high-grade serous ovarian cancer (HGSOC), one of the most prevalent and aggressive gynecologic malignancies. Currently, no suitable model exists to elucidate the role of RAD51D in disease initiation and progression. Here, we established organoids from primary human FTE and introduced TP53 as well as RAD51D knockdown to enable the exploration of their mutational impact on FTE lesion generation. We observed that TP53 deletion rescued the adverse effects of RAD51D deletion on the proliferation, stemness, senescence, and apoptosis of FTE organoids. RAD51D deletion impaired the homologous recombination (HR) function and induced G2/M phase arrest, whereas concurrent TP53 deletion mitigated G0/G1 phase arrest and boosted DNA replication when combined with RAD51D mutation. The co-deletion of TP53 and RAD51D downregulated cilia assembly, development, and motility, but upregulated multiple HGSOC-associated pathways, including the IL-17 signaling pathway. IL-17A treatment significantly improved cell viability. TP53 and RAD51D co-deleted organoids exhibited heightened sensitivity to platinum, poly-ADP ribose polymerase inhibitors (PARPi), and cell cycle-related medication. In summary, our research highlighted the use of FTE organoids with RAD51D mutations as an invaluable in vitro platform for the early detection of carcinogenesis, mechanistic exploration, and drug screening.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Tubas Uterinas , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/genética , Mutação , Neoplasias Ovarianas/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Ligação a DNA
8.
Clin Cancer Res ; 30(3): 600-615, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048050

RESUMO

PURPOSE: Serous tubal intraepithelial carcinoma (STIC) is now recognized as the main precursor of ovarian high-grade serous carcinoma (HGSC). Other potential tubal lesions include p53 signatures and tubal intraepithelial lesions. We aimed to investigate the extent and pattern of aneuploidy in these epithelial lesions and HGSC to define the features that characterize stages of tumor initiation and progression. EXPERIMENTAL DESIGN: We applied RealSeqS to compare genome-wide aneuploidy patterns among the precursors, HGSC (cases, n = 85), and histologically unremarkable fallopian tube epithelium (HU-FTE; control, n = 65). On the basis of a discovery set (n = 67), we developed an aneuploidy-based algorithm, REAL-FAST (Repetitive Element AneupLoidy Sequencing Fallopian Tube Aneuploidy in STIC), to correlate the molecular data with pathology diagnoses. We validated the result in an independent validation set (n = 83) to determine its performance. We correlated the molecularly defined precursor subgroups with proliferative activity and histology. RESULTS: We found that nearly all p53 signatures lost the entire Chr17, offering a "two-hit" mechanism involving both TP53 and BRCA1 in BRCA1 germline mutation carriers. Proliferatively active STICs harbor gains of 19q12 (CCNE1), 19q13.2, 8q24 (MYC), or 8q arm, whereas proliferatively dormant STICs show 22q loss. REAL-FAST classified HU-FTE and STICs into 5 clusters and identified a STIC subgroup harboring unique aneuploidy that is associated with increased proliferation and discohesive growth. On the basis of a validation set, REAL-FAST showed 95.8% sensitivity and 97.1% specificity in detecting STIC/HGSC. CONCLUSIONS: Morphologically similar STICs are molecularly distinct. The REAL-FAST assay identifies a potentially "aggressive" STIC subgroup harboring unique DNA aneuploidy that is associated with increased cellular proliferation and discohesive growth. REAL-FAST offers a highly reproducible adjunct technique to assist the diagnosis of STIC lesions.


Assuntos
Carcinoma in Situ , Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Humanos , Feminino , Proteína Supressora de Tumor p53/genética , Neoplasias Ovarianas/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Tubas Uterinas/patologia , Neoplasias das Tubas Uterinas/genética , Carcinoma in Situ/patologia
9.
Tohoku J Exp Med ; 262(2): 63-74, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-37438122

RESUMO

Cuproptosis can serve as potential prognostic predictors in patients with cancer. However, the role of this relationship in ovarian serous cystadenocarcinoma (OV) remains unclear. 376 OV tumor samples were obtained from the Cancer Genome Atlas (TCGA) database, and long non-coding RNAs (lncRNAs) related to cuproptosis were obtained through correlation analysis. The risk assessment model was further constructed by univariate Cox regression analysis and LASSO Cox regression. Bioinformatics was used to analyze the regulatory effect of relevant risk assessment models on tumor mutational burden (TMB) and immune microenvironment. We obtained 5 lncRNAs (AC025287.2, AC092718.4, AC112721.2, LINC00996, and LINC01639) and incorporated them into the Cox proportional hazards model. Kaplan-Meier (KM) curve analysis of the prognosis found that the high-risk group was associated with a poorer prognosis. The receiver operating characteristic (ROC) curve showed stronger predictive power compared to other clinicopathological features. Immune infiltration analysis showed that high-risk scores were inversely correlated with CD8+ T cells, CD4+ T cells, macrophages, NK cells, and B cells. Functional enrichment analysis found that they may act via the extracellular matrix (ECM)-interacting proteins and other pathways. We successfully constructed a reliable cuproptosis-related lncRNA model for the prognosis of OV.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , Cistadenocarcinoma Seroso/genética , Prognóstico , Carcinoma Epitelial do Ovário , Imunoterapia , Neoplasias Ovarianas/genética , Microambiente Tumoral
10.
Cancer Gene Ther ; 31(2): 300-310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030811

RESUMO

Ovarian cancer is the deadliest gynecological malignancy, and accounts for over 150,000 deaths per year worldwide. The high grade serous ovarian carcinoma (HGSC) subtype accounts for almost 70% of ovarian cancers and is the deadliest. HGSC originates in the fimbria of the fallopian tube and disseminates through the peritoneal cavity. HGSC survival in peritoneal fluid requires cells to resist anoikis (anchorage-independent apoptosis). Most anoikis resistant mechanisms are dependent on microenvironment interactions with cell surface-associated proteins, such as integrins and receptor tyrosine kinases (RTKs). We previously identified the gene CASC4 as a driver of anoikis resistance. CASC4 is predicted to be a Golgi-associated protein that may regulate protein trafficking to the plasma membrane, but CASC4 is largely uncharacterized in literature; thus, we sought to determine how CASC4 confers anoikis resistance to HGSC cells. Mining of publicly available ovarian cancer datasets (TCGA) showed that CASC4 is associated with worse overall survival and increased resistance to platinum-based chemotherapies. For experiments, we cultured three human HGSC cell lines (PEO1, CaOV3, OVCAR3), and a murine HGSC cell line, (ID8) with shRNA-mediated CASC4 knockdowns (CASC4 KD) in suspension, to recapitulate the peritoneal fluid environment in vitro. CASC4 KD significantly inhibited cell proliferation and colony formation ability, and increased apoptosis. A Reverse Phase Protein Assay (RPPA) showed that CASC4 KD resulted in a broad re-programming of membrane-associated proteins. Specifically, CASC4 KD led to decreased protein levels of the RTK Epidermal Growth Factor Receptor (EGFR), an initiator of several oncogenic signaling pathways, leading us to hypothesize that CASC4 drives HGSC survival through mediating recycling and trafficking of EGFR. Indeed, loss of CASC4 led to a decrease in both EGFR membrane localization, reduced turnover of EGFR, and increased EGFR ubiquitination. Moreover, a syngeneic ID8 murine model of ovarian cancer showed that knocking down CASC4 leads to decreased tumor burden and dissemination.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/patologia , Anoikis/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Fatores de Transcrição , Microambiente Tumoral
11.
J Pathol ; 262(1): 4-9, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850576

RESUMO

Mesonephric-like adenocarcinoma (MLA) of the female genital tract is an uncommon histotype that can arise in both the endometrium and the ovary. The exact cell of origin and histogenesis currently remain unknown. Here, we investigated whole genome DNA methylation patterns and copy number variations (CNVs) in a series of MLAs in the context of a large cohort of various gynaecological carcinoma types. CNV analysis of 19 MLAs uncovered gains of chromosomes 1q (18/19, 95%), 10 (15/19, 79%), 12 (14/19, 74%), and 2 (10/19, 53%), as well as loss of chromosome 1p (7/19, 37%). Gains of chromosomes 1q, 10, and 12 were also identified in the majority of mesonephric adenocarcinomas of the uterine cervix (MAs) as well as subsets of endometrioid carcinomas (ECs) and low-grade serous carcinomas of the ovary (LGSCs) but only in a minority of serous carcinomas of the uterine corpus (USCs), clear cell carcinomas (CCCs), and tubo-ovarian high-grade serous carcinomas (HGSCs). While losses of chromosome 1p together with gains of chromosome 1q were also identified in both MA and LGSC, gains of chromosome 2 were almost exclusively identified in MLA and MA. Unsupervised hierarchical clustering and t-SNE analysis of DNA methylation data (Illumina EPIC array) identified a co-clustering for MLAs and MAs, which was distinct from clusters of ECs, USCs, CCCs, LGSCs, and HGSCs. Group-wise comparisons confirmed a close epigenetic relationship between MLA and MA. These findings, in conjunction with the established histological and immunophenotypical overlap, suggest bona fide mesonephric differentiation, and support a more precise terminology of mesonephric-type adenocarcinoma instead of MLA in these tumours. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Endometrioide , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Colo do Útero/patologia , Variações do Número de Cópias de DNA , Metilação de DNA , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Cistadenocarcinoma Seroso/genética , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
12.
Sci Rep ; 13(1): 19287, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935712

RESUMO

Epithelial ovarian cancer (EOC) is one of the leading cancers in women, with high-grade serous ovarian cancer (HGSOC) being the most common and lethal subtype of this disease. A vast majority of HGSOC are diagnosed at the late stage of the disease when the treatment and total recovery chances are low. Thus, there is an urgent need for novel, more sensitive and specific methods for early and routine HGSOC clinical diagnosis. In this study, we performed miRNA expression profiling using the NanoString miRNA assay in 34 serum samples from patients with HGSOC and 36 healthy women. We identified 13 miRNAs that were differentially expressed (DE). For additional exploration of expression patterns correlated with HGSOC, we performed weighted gene co-expression network analysis (WGCNA). As a result, we showed that the module most correlated with tumour size, nodule and metastasis contained 8 DE miRNAs. The panel including miR-1246 and miR-150-5p was identified as a signature that could discriminate HGSOC patients with AUCs of 0.98 and 1 for the training and test sets, respectively. Furthermore, the above two-miRNA panel had an AUC = 0.946 in the verification cohorts of RT-qPCR data and an AUC = 0.895 using external data from the GEO public database. Thus, the model we developed has the potential to markedly improve the diagnosis of ovarian cancer.


Assuntos
Cistadenocarcinoma Seroso , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/genética , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Biomarcadores Tumorais
13.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895093

RESUMO

Epithelial ovarian cancer (EOC) is the leading cause of death from gynecological cancers in Western countries. High-Grade Serous Ovarian Carcinoma (HGSOC) accounts for 60-70% of EOC and is the most aggressive subtype. Reduced PTPN13 expression levels have been previously correlated with worse prognosis in HGSOC. However, PTPN13's exact role and mechanism of action in these tumors remained to be investigated. To elucidate PTPN13's role in HGSOC aggressiveness, we used isogenic PTPN13-overexpressing clones of the OVCAR-8 cell line, which poorly expresses PTPN13, and also PTPN13 CRISPR/Cas9-mediated knockout/knockdown clones of the KURAMOCHI cell line, which strongly expresses PTPN13. We investigated their migratory and invasive capacity using a wound healing assay, their mesenchymal-epithelial transition (EMT) status using microscopy and RT-qPCR, and their sensitivity to chemotherapeutic drugs used for HGSOC. We found that (i) PTPN13 knockout/knockdown increased migration and invasion in KURAMOCHI cells that also displayed a more mesenchymal phenotype and increased expression of the SLUG, SNAIL, ZEB-1, and ZEB-2 EMT master genes; and (ii) PTPN13 expression increased the platinum sensitivity of HGSOC cells. These results suggest that PTPN13 might be a predictive marker of response to platinum salts in HGSOC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transição Epitelial-Mesenquimal/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Carcinoma Epitelial do Ovário/genética , Fenótipo , Linhagem Celular Tumoral , Proteína Tirosina Fosfatase não Receptora Tipo 13/genética
14.
Nat Commun ; 14(1): 6505, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845213

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is characterised by poor outcome and extreme chromosome instability (CIN). Therapies targeting centrosome amplification (CA), a key mediator of chromosome missegregation, may have significant clinical utility in HGSOC. However, the prevalence of CA in HGSOC, its relationship to genomic biomarkers of CIN and its potential impact on therapeutic response have not been defined. Using high-throughput multi-regional microscopy on 287 clinical HGSOC tissues and 73 cell lines models, here we show that CA through centriole overduplication is a highly recurrent and heterogeneous feature of HGSOC and strongly associated with CIN and genome subclonality. Cell-based studies showed that high-prevalence CA is phenocopied in ovarian cancer cell lines, and that high CA is associated with increased multi-treatment resistance; most notably to paclitaxel, the commonest treatment used in HGSOC. CA in HGSOC may therefore present a potential driver of tumour evolution and a powerful biomarker for response to standard-of-care treatment.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Centrossomo/metabolismo , Cistadenocarcinoma Seroso/genética
15.
Exp Mol Med ; 55(10): 2205-2219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779141

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. To date, the profiles of gene mutations and copy number alterations in HGSOC have been well characterized. However, the patterns of epigenetic alterations and transcription factor dysregulation in HGSOC have not yet been fully elucidated. In this study, we performed integrative omics analyses of a series of stepwise HGSOC model cells originating from human fallopian tube secretory epithelial cells (HFTSECs) to investigate early epigenetic alterations in HGSOC tumorigenesis. Assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and RNA sequencing (RNA-seq) methods were used to analyze HGSOC samples. Additionally, protein expression changes in target genes were confirmed using normal HFTSECs, serous tubal intraepithelial carcinomas (STICs), and HGSOC tissues. Transcription factor motif analysis revealed that the DNA-binding activity of the AP-1 complex and GATA family proteins was dysregulated during early tumorigenesis. The protein expression levels of JUN and FOSL2 were increased, and those of GATA6 and DAB2 were decreased in STIC lesions, which were associated with epithelial-mesenchymal transition (EMT) and proteasome downregulation. The genomic region around the FRA16D site, containing a cadherin cluster region, was epigenetically suppressed by oncogenic signaling. Proteasome inhibition caused the upregulation of chemokine genes, which may facilitate immune evasion during HGSOC tumorigenesis. Importantly, MEK inhibitor treatment reversed these oncogenic alterations, indicating its clinical effectiveness in a subgroup of patients with HGSOC. This result suggests that MEK inhibitor therapy may be an effective treatment option for chemotherapy-resistant HGSOC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Carcinogênese/genética , Fatores de Transcrição/metabolismo , Epigênese Genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
16.
Medicine (Baltimore) ; 102(35): e34851, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657028

RESUMO

Studies have shown that aging significantly impacts tumorigenesis, survival outcome, and treatment efficacy in various tumors, covering high-grade serous ovarian cancer (HGSOC). Therefore, the objective for this investigation is to construct an aging-relevant risk signature for the first time, which will help evaluate the immunogenicity and survival status for patients with HGSOC. Totaling 1727 patients with HGSOC, along with their mRNA genomic data and clinical survival data, were obtained based on 5 independent cohorts. The Lasso-Cox regression model was utilized to identify the aging genes that had the most significant impact on prognosis. The risk signature was developed by integrating the determined gene expression and accordant model weights. Additionally, immunocytes in the microenvironment, signaling pathways, and immune-relevant signatures were assessed based on distinct risk subgroups. Finally, 2 cohorts that underwent treatment with immune checkpoint inhibitor (ICI) were employed to confirm the effects of identified risk signature on ICI efficacy. An aging signature was constructed from 12 relevant genes, which showed improved survival outcomes in low-risk HGSOC patients across discovery and 4 validation cohorts (all P < .05). The low-risk subgroup showed better immunocyte infiltration and higher enrichment of immune pathways and ICI predictors based on further immunology analysis. Notably, in the immunotherapeutic cohorts, low-risk aging signature was observed to link to better immunotherapeutic outcomes and increased response rates. Together, our constructed signature of aging has the potential to assess not only the prognosis outcome and immunogenicity, but also, importantly, the efficacy of ICI treatment. This signature provides valuable insights for prognosis prediction and immunotherapeutic effect evaluation, ultimately promoting individualized treatment for HGSOC patients.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Carcinogênese , Envelhecimento , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/genética , Microambiente Tumoral/genética
17.
Hum Pathol ; 141: 15-21, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673346

RESUMO

Thirteen years ago, we pointed out that ovarian transitional cell carcinomas (TCCs) and conventional high-grade serous carcinomas (HGSCs) had similar genetic alterations and clinical behavior. Consequently, ovarian TCC is now classified as a morphologic variant of HGSC. Defective homologous recombination, resulting from genetic or epigenetic inactivation of DNA damage repair genes, such as BRCA1/2, occurs in approximately 50% of the HGSCs. Although BRCA mutations have been associated with HGSCs with solid, pseudoendometrioid or transitional (SET) features, little is known about the role of non-BRCA homologous recombinationrepair (HRR) genes and the HRR status in these tumors. Using two commercially available assays (Myriad Genetics MyChoice CDx Plus test and SOPHiA Dx Homologous Recombination Deficiency Solution), we study mutations of BRCA1/2 and non-BRCA HRR genes (ATM, BARD1, BRIP1, CDK12, CHEK1/2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, and RAD54L), and the HRR status in 19 HGSCs with SET features and 20 HGSCs with classic morphology. We also studied, as control cases, 5 endometrioid carcinomas, 1 clear cell carcinoma, 2 low-grade serous carcinomas, and 1 malignant Brenner tumor. Seven HGSCs with SET features (7/19; 37%) showed BRCA mutations (4 BRCA1, 2 BRCA2, and 1 BRCA1/2). Mutations in non-BRCA HRR genes were found in ATM (1/15; 7%), BARD1 (1/15; 7%), and BRIP1 (1/19; 5%). Most HGSCs with SET features (17/19; 90%) were considered to be homologous recombination-deficient tumors. Three HGSCs with classic morphology (3/20; 15%) showed BRCA2 mutations. Mutations in non-BRCA HRR genes were found in CDK12 (2/14; 14%), FANCL (1/14; 7%), RAD51B (1/14; 7%), and RAD54L (1/14; 7%). Eleven HGSCs with classical morphology (11/20; 55%) were considered to be homologous recombination deficient. In contrast, all ovarian carcinoma control cases (5 endometrioid carcinomas, 1 clear cell carcinoma, 2 low-grade serous carcinomas, and 1 malignant Brenner tumor) were homologous recombination proficient and did not have BRCA mutations. Our results show that the majority of HGSCs with SET features are homologous recombination-deficient tumors independently of the BRCA status and highlight the importance of the HRR tumor testing, especially in BRCA wild-type tumors. Recognition of transitional cell variant of HGSCs may help to identify patients most likely to benefit from PARP inhibitors.


Assuntos
Tumor de Brenner , Carcinoma Endometrioide , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Mutação , Carcinoma Epitelial do Ovário , Recombinação Homóloga , Neoplasias Peritoneais/patologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia
18.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686015

RESUMO

Gynaecological serous carcinomas (GSCs) constitute a distinctive entity among female tumours characterised by a very poor prognosis. In addition to late-stage diagnosis and a high rate of recurrent disease associated with massive peritoneal carcinomatosis, the systematic acquisition of resistance to first-line chemotherapy based on platinum determines the unfavourable outcome of GSC patients. To explore the molecular mechanisms associated with platinum resistance, we generated patient-derived organoids (PDOs) from liquid biopsies of GSC patients. PDOs are emerging as a relevant preclinical model system to assist in clinical decision making, mainly from tumoural tissue and particularly for personalised therapeutic options. To approach platinum resistance in a GSC context, proficient PDOs were generated from the ascitic fluid of ovarian, primary peritoneal and uterine serous carcinoma patients in platinum-sensitive and platinum-resistant clinical settings from the uterine aspirate of a uterine serous carcinoma patient, and we also induced platinum resistance in vitro in a representative platinum-sensitive PDO. Histological and immunofluorescent characterisation of these ascites-derived organoids showed resemblance to the corresponding original tumours, and assessment of platinum sensitivity in these preclinical models replicated the clinical setting of the corresponding GSC patients. Differential gene expression profiling of a panel of 770 genes representing major canonical cancer pathways, comparing platinum-sensitive and platinum-resistant PDOs, revealed cellular response to DNA damage stimulus as the principal biological process associated with the acquisition of resistance to the first-line therapy for GSC. Additionally, candidate genes involved in regulation of cell adhesion, cell cycles, and transcription emerged from this proof-of-concept study. In conclusion, we describe the generation of PDOs from liquid biopsies in the context of gynaecological serous carcinomas to explore the molecular determinants of platinum resistance.


Assuntos
Ascite , Cistadenocarcinoma Seroso , Humanos , Feminino , Organoides , Peritônio , Líquido Ascítico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética
19.
Asian Pac J Cancer Prev ; 24(9): 3247-3259, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774079

RESUMO

OBJECTIVES: Serous ovarian carcinoma (SOC) is a biologically heterogeneous with different genomic and molecular profiles, beside clinical response to the chemotherapy with subsequent in obstacles in starting unified, acceptable treatments and so we assess immunoexpression of Nanog, ZEB1, and EpCAM in SOC. METHODS: In this study, the immunoexpression of Nanog, ZEB1, and EpCAM was studied in 60 cases of SOC. Overall survival (OS), disease-free survival (DFS) data and response to chemotherapy were  analyzed. RESULTS: NANOG was immunostained in 65% of the cases with a significant association with tumor grade, lymph node metastasis, and FIGO stage (p < 0.001 for each). ZEB1 showed moderate- high expression in 58.3% of the cases with significant up-regulation of ZEB1 expression with SOC grade, nodal metastasis, and SOC FIGO stage (p<0.001). EpCAM revealed high expression in 60% of the cases with significant association with higher grade, nodal metastasis, and advanced stage (p < 0.001 for each). Up-regulation of Nanog was significantly associated with response to chemotherapy, relapse, shorter OS and DFS (p < 0.001 for each). ZEB1 overexpression exhibited a significant association with response to chemotherapy (p= 0.012), relapse, shorter OS and DFS (p<0.001 for each). Moreover, the high EpCAM had a significant association with response to chemotherapy (p= 0.043), relapse (p < 0.001) shorter OS (p=0.006) and DFS (p< 0.001). CONCLUSIONS: Up-regulation of Nanog and ZEB-1 and EpCAM perhaps promote an aggressive SOC with a high risk of relapse and unfavorable response to standard chemotherapy regimen.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/patologia , Cistadenocarcinoma Seroso/genética , Molécula de Adesão da Célula Epitelial , Proteína Homeobox Nanog/genética , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Prognóstico , Homeobox 1 de Ligação a E-box em Dedo de Zinco
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(9): 834-840, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37732580

RESUMO

Objective To investigate the expression of long non-coding RNA ubiquitin-specific peptidase 30 antisense RNA 1 (lncRNA USP30-AS1) and its relationship with immune infiltration in ovarian serous cystadenocarcinoma (OSC), and to determine its prognostic role in OSC. Methods The Cancer Genome Atlas (TCGA) database was utilized to retrieve the expression of USP30-AS1 and clinical information of 384 OSC patients. Wilcoxon rank-sum test was employed to compare the expression of USP30-AS1 between OSC and normal ovarian tissues. Logistic regression analysis was conducted to assess the relationship between clinical pathological features and USP30-AS1. Gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were performed to investigate enrichment pathways and functions and quantify the degree of immune cell infiltration in USP30-AS1. Based on the expression level of long non-coding RNA (lncRNA) USP30-AS1, the samples were divided into high and low expression groups according to the expression mean. Log-rank tests, univariate and multivariate proportional hazards model (Cox) were used to compare prognostic differences between different USP30-AS1 expression groups. The impact of lncRNA USP30-AS1 expression on other genomic analyses was also analyzed. Results High expression of USP30-AS1 was significantly associated with the International Federation of Gynecology and Obstetrics (FIGO) stage of the tumor. Multivariate survival analysis indicated that USP30-AS1 expression level served as an independent prognostic marker for OSC. GSEA data showed that high expression of USP30-AS1 might activate programmed death 1 (PD-1) signaling pathway, cytotoxic T lymphocyte-associated protein 4 (CTLA4) pathway, B-cell receptor signaling pathway, cell apoptosis, fibroblast growth factor receptor (FGFR) signaling pathway, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. The expression of USP30-AS1 was negatively correlated with immune cell infiltration, including B cells, CD4+ T cells, dendritic cells, CD8+ T cells, and neutrophils. Conclusion USP30-AS1 may be used as a prognostic molecular marker for OSC.


Assuntos
Cistadenocarcinoma Seroso , RNA Longo não Codificante , Feminino , Humanos , Gravidez , Linfócitos T CD8-Positivos , Biologia Computacional , Cistadenocarcinoma Seroso/genética , RNA Antissenso , RNA Longo não Codificante/genética , Proteases Específicas de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...